Long-time behaviour for a non-autonomous Klein-Gordon-Zakharov system

نویسندگان

چکیده

The aim of this paper is to study the long-time dynamics solutions evolution system { u t ? ? + ? ( ) 1 2 a ? v = f , x ? ? × ? ? 0 subject boundary conditions ? where bounded smooth domain in R n ? 3 with ?? assumed be regular enough, > constant, Hölder continuous function and dissipative nonlinearity. This problem non-autonomous version well known Klein-Gordon-Zakharov system. Using uniform sectorial operators theory, we will show local global well-posedness H L . Additionally, prove existence, regularity upper semicontinuity pullback attractors.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Strong instability of standing waves for nonlinear Klein-Gordon equation and Klein-Gordon-Zakharov system

The orbital instability of ground state standing waves eφω(x) for the nonlinear Klein-Gordon equation has been known in the domain of all frequencies ω for the supercritical case and for frequencies strictly less than a critical frequency ωc in the subcritical case. We prove the strong instability of ground state standing waves for the entire domain above. For the case when the frequency is equ...

متن کامل

Orbital Stability for Periodic Standing Waves of the Klein-gordon-zakharov System and the Beam Equation

The existence and stability of spatially periodic waves (eφω, ψω) in the KleinGordon-Zakharov (KGZ) system are studied. We show a local existence result for low regularity initial data. Then, we construct a one-parameter family of periodic dnoidal waves for (KGZ) system when the period is bigger than √ 2π. We show that these waves are stable whenever an appropriate function satisfies the standa...

متن کامل

An Exponential Wave Integrator Pseudospectral Method for the Klein-gordon-zakharov System

An exponential wave integrator sine pseudospectral method is presented and analyzed for discretizing the Klein-Gordon-Zakharov (KGZ) system with two dimensionless parameters 0 < ε ≤ 1 and 0 < γ ≤ 1 which are inversely proportional to the plasma frequency and the speed of sound, respectively. The main idea in the numerical method is to apply the sine pseudospectral discretization for spatial der...

متن کامل

An Exponential Wave Integrator Sine Pseudospectral Method for the Klein-Gordon-Zakharov System

An exponential wave integrator sine pseudospectral method is presented and analyzed for discretizing the Klein-Gordon-Zakharov (KGZ) system with two dimensionless parameters 0 < ε ≤ 1 and 0 < γ ≤ 1 which are inversely proportional to the plasma frequency and the speed of sound, respectively. The main idea in the numerical method is to apply the sine pseudospectral discretization for spatial der...

متن کامل

A Note on Exact Travelling Wave Solutions for the Klein–Gordon– Zakharov Equations

where the function u(x, t) denotes the fast time scale component of the electric field raised by electrons, and the function n(x, t) denotes the deviation of the ion density from its equilibrium. Here u(x, t) is a complex function, n(x, t) is a real function, α , β are two nonzero real parameters. This system describes the interaction of the Langmuir wave and the ion acoustic wave in a high fre...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Journal of Mathematical Analysis and Applications

سال: 2022

ISSN: ['0022-247X', '1096-0813']

DOI: https://doi.org/10.1016/j.jmaa.2021.125670